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Abstract

A rate-dependent quasi-flow plastic constitutive model with punch-speed sensitivity is proposed for the large-
deformation sheet metal forming process, which is based on the quasi-flow corner theory and U-L formulation for the
virtual work-rate equation. Three kinds of constitutive theories with strain rate dependence, classical flow theory,
deformation theory with rate form obeying non-orthogonality rule, and the present quasi-flow corner theory, are
introduced into the U-L finite element formulation to simulate the deformation localization processes of plane strain
tension in order to investigate effects of strain rate sensitivity on the localizing deformation characters. Furthermore,
three kinds of typical forming processes sheet metals, one being an uniaxial stretching and another being a square cup
drawing with circular blank, and third being a deep drawing of an oil pan, actual industrial forming part, are also
numerically simulated by the present model and compared with experimental results. Good agreement between
numerical simulation and experimental ones exhibits the validity of the quasi-flow corner theory.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In most automobile manufacturing companies, stamping CAE technique is widely adopted and intro-
duced for the purpose of predicting forming defects of stamped sheet panels and saving tool modification
man-hours. Due to complicated forming process and a large number of relative influence factors for the
sheet metal forming, it is important to provide more effective and more accurate CAE software. In these
influence factors, in general, punch speed is one of them, which is sensitive to the formability of the stamped
sheet panels and the stamping process. For example, for a deep-drawing panel with large plastic defor-
mation, the formability obtained by hydraulic pressure and mechanical pressure is obviously different. In
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many deep-drawing processes, the product can be easily formed by the hydraulic pressure with low punch
speed, but, cannot by the mechanical pressure with high punch speed.

During the past two decades, considerable attention has been devoted to the development of commercial
CAE software based on dynamic explicit finite element algorithm, such as DYNA3D, PAM-STAMP and
OPTRIS. However, the algorithm is difficult to reflect effects of actual punch speed, if the initial speed field
used in the explicit algorithm is much higher than the actual punch speed; on the other hand, overlong
solving time is almost insufferable if the actual speed is taken as initial speed field. The effects of the actual
punch speed can be actually introduced into the constitutive equations based on static implicit derived by
Kim et al. (1978) or explicit finite element algorithm with strain rate-dependency proposed by McMeeking
and Rice (1975).

Up to now, there have been some researches of the rate-dependent numerical analysis on sheet metal
forming, in which the effect of strain rate is an important parameter for forming processes. Among these
researches, two typical formulation methods were widely used. Park et al. (1987) and Germain and his
coworkers (1989) proposed their rigid-viscoplastic finite element methods, respectively; Chandra (1986)
developed a generalized elastic-viscoplastic FEM; Hart (1976) researched the constitutive relations of
nonelastic deformation of metals; Huang and Liu (1994) presented the elastic-viscoplastic finite element
model based on an updated Lagrangian formulation and a small increment method; Needlemen and
coworkers (1988, 1989) studied material rate-dependence and mesh sensitivity in the localization defor-
mation for simple shearing and planar uniform tension processes. Above methods were, in fact, limited to
only analyze 2-D sheet metal forming process.

It should be mentioned that up to now, all of the methods or algorithms whether explicit or static
implicit finite element formulation have been based on classical plastic constitutive law obeying ortho-
gonality rule. However, the deep-drawing process of sheet metal panel with large plastic deformation
observes strong nonlinear characteristics and involves complicated loading and unloading histories even
strain localization phenomenon, such as local necking, wrinkling and fracturing. It is well known that the
complicated deformation histories and strain localization are sensitive to the constitutive law used in the
sheet metal forming simulation. It has also been noted that on the strain localization analysis for some
simple tests, such as the uniaxial tension, the finite element methods using the classical plastic constitutive
theory based on orthogonality rule often obtain disagreement results compared with experiments. There-
fore, around this subject of strain localization for elastic—plastic solids, many researchers proposed a group
of plastic constitutive theories based on non-orthogonality rule. Budiansky (1959), Storen and Rice (1975)
and Hutchinson (1974) developed a vertex hardening constitutive model based on the rate form of the J,
deformation theory, which provides more accurate predictions for the buckling process of sheet metal than
the classical flow theory of plasticity does. Christofferson and Hutchinson (1979) proposed a class of plastic
constitutive equations with vertex effect in which the plastic potential is introduced as a function of stress
increment, and a smooth transition from plastic loading to elastic unloading is incorporated. Its simplest
form called J, corner theory was then applied to several localization problems. Based on tensor algebra,
Gotoh (1985) proposed a group of plastic constitutive equations in which the vertex effect satisfies mathe-
matical restriction about tensor functions. Neale (1981) gave excellent review to these constitutive equations
in his summarizing paper. It should be also noted that according to the experimental work for the poly-
crystalline material, the original yield surface has a corner due to the slip deformation of crystal. Therefore,
the so-called corner theories above are consistent with the experimentally observed evidence.

A common feature of these constitutive theories is that the non-orthogonality rule between plastic strain
increment and yield surface is observed throughout the whole plastic deformation process from initial
yielding up to final strain localization and fracture. From the point of view of plastic potential and classical
flow theory, it is generally acknowledged that in the initial stage of plastic deformation, the yield surface
should be convex and smooth and consistent with the normality rule of plastic flow. However, strain
localization of sheet metal forming always occurs at the final stage of plastic deformation where the suc-
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ceeding “yield surface” will gradually appear as a vertex effect. According to the above discussions, Hu
et al. (1998a,b) proposed a quasi-flow corner constitutive law with no rate-dependency. In this paper, the
rate-dependent quasi-flow corner plastic theory with punch speed sensitivity is proposed on the basis of the
quasi-flow corner constitutive law and the static explicit U-L formulation for the virtual power equation
proposed by Hu et al. (1998, 2001, 2002), and then three kinds of plasticity constitutive theories with strain
rate dependence, J2F, J2D derived by Budiansky (1959), and by Storen and Rice (1975) and the present
quasi-flow corner theory, are used to simulate the strain localization deformation processes of plane strain
tension problem. Besides, the numerical simulation of an uniaxial stretching, a square cup drawing with
circular blank, and a deep drawing process of an oil pan is carried out as well. The focus of the present
research is to investigate effects of strain rate sensitivity exponent and tension speed for the plane strain
tension (punch speed for sheet metal stamping) on the localizing deformation characters such as tensile
strengthening, strain localizing, necking elongation and thickness thinning of specimens. Simulated results
of the three kinds of constitutive theories with rate dependence are compared and discussed in detail for the
plane strain tension. And then for the sheet metal forming, validation of the simulations is performed
through usage of a comparison with the experimental results of the uniaxial stretching of a HPC35 high
tensional steel sheet, of the square cup drawing of a commonly used 08Al sheet, and of the deep drawing of
08ZF sheet from different punch speeds. On the final example, the deep-drawing process of an oil pan is
simulated by the present QFCT model and also compared with experimental ones which further shows the
validity of the present theory on simulating complicated industrial forming.

2. Analytical background
2.1. Theoretical foundations

In the past work, a new type of elastic—plastic constitutive theory, so-called quasi-flow corner theory
derived by Hu et al. (1998a,b) was proposed with no rate-dependency, and some detailed discussions on
different plastic constitutive equations based on non-normality rule and on isotropic Mises yield criterion
were presented. In the QFCT, the plastic strain rate &, can be expressed as

o 3/ 1 1 , 3\ /11,
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in which E, is the tangent slope of the stress—strain curve under uniaxial tension,

1 —2pq

Eo=F 2

tg = 0.5 — g(8,)(0.5 — p), 3)

1 . 1
Ly = 3 (001 + 010 ) — 551‘;5/(1, (4)

where E and p are the common Young’s modulus and Poisson ratio, respectively, and g(&,) is a modulus
evolutional function with respect to the current effective plastic strain &,, which can be generally written as
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where Eg is the secant modulus of the stress—strain curve under uniaxial tension, ag is a small constant

related to the strain hardening exponent n, and Eg is a transitional threshold strain value where Eq
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transforms to Es, and is related to material characters and plastic deformation manners. According to the
model proposed by Hu et al. (1998a,b, 2001), in no less of generality, the & » and ao values are taken to be n
and 0.04n, respectively. Now, we assume that

)

if noting that
L6 = 6, (7)

and

H =

(8)

_ée\.' Qr-

where ¢ and & are effective stress rate and effective plastic strain rate, respectively, the following equation
can be obtained:

. - g
P‘ = ppl/ 2H pl/H (9)
in which
pij = 30;;/(26). (10)
The total strain rate ¢; can be expressed as
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Considering that 6,0}, =0, 66}, =0, G = 1+,1 and Djy,0), = 1“ o;; = 2Goj, Eq. (11) becomes
. 3 (., ¢ 3Gs
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In order to get an explicit expression of the constitutive equation for the QFCT with strain rate-
dependency, it is necessary to express ¢ and o;; in Eq. (14) by using strain rate. Considering that

6’ 2_O'k10'k/ (15)
we have
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Noting that d/,0], = 25°, Gl =Gy — 10,64 and 6y = l_E—zﬂékk, ¢ and a;; can be written as
0= 6’ (O_l/?lf GSP) 17
2G(1+p) . ( )
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Introducing Eq. (17) into Eq. (14), we have
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Finally, the constitutive equation of QFCT with strain rate-dependency is obtained as follows:
. Hq 3G [1 E 3G . 3G
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it can be easily proved that
3G
P = ?aﬁj = Lijupn (22)
and
3 ,3G
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So, the constitutive equation of QFCT with strain rate-dependency is obtained by
6y = Lijuén — &Py (24)
In addition, the effective stress rate & can be written as
G = Pyt — eppiiPy. (25)

It should be noted from Egs. (6) and (24) that H, becomes infinite when E, trends to E, and moreover, L,
in Eq. (20) will fall back on Df,.

Now, one introduces the general yield criterion under uniaxial stress state and relating to strain rate
sensitivity as follows:

$(G,8p, ) =0 (26)
or
&= Y(5,5), (27)

where G, &, and &, are Cauchy effective stress, effective plastic strain and effective plastic strain rate,

respectively. In no less of generality, the common Holloman formula G = A(&, + &))" (Z )" is used, in which
Eg, *;, n and m are initial plastic strain, initial plastic-strain rate, strain hardening expd’nent and strain rate
sensitivity exponent, respectively. So, Eq. (27) can be written as
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2.2. Introduction of punch-speed dependence

Effect of the punch-speed i on sheet metal formability in industrial stamping processes can be introduced
by the above strain rate-dependent quasi-flow corner theory and the Hollomon formula. In no less of
generality, the punch-speed i can be expressed as

. Ao
= A e

where Aw and Af mean the displacement increment of moving punch and the time increment corresponding
to Aw, respectively. In general, punch speed is a known parameter imported by users, and can be considered
as a constant. Even now, the punch speed values of mechanical press and hydraulic pressure are different.
Provided that the punch speed is a variable, the curve of the speed in terms of punch journey should be
given. In the numerical simulation of sheet metal forming process, all of the mechanical variables at the
time ¢ are assumed to be known. Once the speed # is given, the speed sensitivity character can be introduced
into above constitutive equation by the following tangent-coefficient scheme, due to very small time
increment step Az.
Now, one defines the effective plastic strain increment Ag, from time ¢ to ¢ 4 At by

Ag, = &,(t + At) — &,(2). (32)

Within the time interval from # to ¢ + At, the displacement increment Aw of the moving punch is previously
determined by the total displacement difference between time ¢ and ¢ — At. For the given speed iz, the time
increment step Az is obtained by Eq. (31) and used for all of material elements. Further, the above equation
can be linearly interpolated in term of Az and approximately expressed as

A%, = At{(l — 0), (1) + 05, (¢ + At)} (33)

in which 0 <0< 1. It can be obviously found that when 0 =0, 0.5 and 1.0, Eq. (32) is just about the
formulation formula of Euler method, Crank—Niokolson method and full implicit time integrating method,
respectively. On the other hand, the plastic strain rate at 7 + Az can be approximately expressed as

. - dg, g,

&1+ At) =5,(t) + a—a’)Aa + a—;Asﬂ. (34)

P
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Introducing Eq. (33) into the above equation, one has

. ) O 0%, .
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&,(t+ At) = &,(1) + (Ar) 9{ 6;6+6_328p} (35)
in which ¢ = % and ép = %. It must be mentioned that the meaning of Ag, in Eq. (34) is different with that

in Eq. (33), that is to say, ép #* §p(t). In order to distinguish them, the Ag, value in Eq. (34) is marked as Ag,.
In addition, in terms of Mises yield criterion, the Cauchy effective stress rate ¢ can be expressed

as G = 23—60 .G;; = p;;0;;. Therefore, in terms of Eq. (24), the Cauchy effective stress increment Ag can also
be written as
From Eq. (24), (34)—(36), one has
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The above equation can be further written as
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Obviously, if taking 8 = 0, one has & = 0. It can be easily found from the above equation that

‘.g'p = ép(t)- (45)
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Introducing Eq. (44) into Eq. (24), the constitutive equation of QFCT with strain rate-dependency
is rewritten as follows:

TSP (:

6y = Lijuén — ﬁ()épij (46)
in which

. 1 ¢

Lijy = Ly — A szijl- (47)

For a given & value in Eq. (31), using Egs. (39) and (47), the effect of punch-speed sensitivity on con-
stitutive model can be introduced.

3. Finite element formulation

In finite elasto-plasticity, the basic kinematic assumption is the multiplicative decomposition of total
deformation gradient. The total strain description in small strain range must be coincided with the finite
strain formulation of elastic—plastic solids. Considering that most of sheet metal in plastic forming are of
infinite elasticity and finite plasticity, a simple remedy is to replace the strain rate ¢; and 6;; in Eq. (46) by
the deformation rate d;; and the Jaumann rate o;; of Cauchy stress defined relative to current material
configuration, respectively. In this case, Eq. (46) is written as

v s & (1)
O'[‘:L," d, —R P . 48
i = Lid = By (48)

Now, the virtual power equation described by the updated Lagrangian form is used to the present finite

element formulation, which can be generally written as

Ve Ve Ag

where 7; is the first Poila—Kirchhoff stress rate tensor, and I i 1s velocity gradient. Considering the incom-
pressibility condition of plastic deformation volume, #; is related to the Jaumann rate o; of the Cauchy
stress g;; by

. v . .

tij = 0y — Opdyj — Ol + iV (50)
Introducing Egs. (48) and VgSO) into Eq. (49), and considering the symmetry of the tensor P; in Eq. (21) and
further the Jaumann rate o;;, one obtains

/ l,\/l'jklélk] Sd”dV + / (O'{kvjyk - akidkj - O-kjdki) Sl/,dV
Ve

ye

ye e 1+¢ Ay
One defines that
Qijkl = Uljéki (52)
and
1
Fj = 5 (0401 + 610 + 0k + 01i0k)). (53)

2
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And then, one further assumes that
d=Bq and 1=B,q (54)

where B and B, are the strain matrices corresponding to the deformation rate vector d and the velocity
gradient vector 1, and ¢ is nodal velocity vector of elements. Introducing Eqgs. (52)~(54) into Eq. (51), and
considering the randomicity of the virtual velocity 6v;, the discrete element stiffness equation can be gene-
rally written by using matrix form

kq=p+f+T, (53)
where
k:/ BT(L_F)BdV+/ BIQB, dV, (56)
ye ye

, &P (1) 3GeP(t)

_ [ grp ! dV:/ BTe' 220\ 4y, 57
P /V 1+¢ v T+ 7
i / NTgdy, (58)

V€
i / NTgdA. (59)
Ao

In order to effectively simulate the strain localization and the shear bend elongation processes of the
plane strain tension, and investigate the validity of the present QFCT model in simulating the post-
instability problem, a so-called crossed triangles element model proposed by Nagtegaal et al. (1974) is
introduced into the above U-L formulation. Moreover, in the sheet metal forming, a lot of experimental
results with punch speed sensitivity can become more convincing comparison and examination yardsticks
for the present model. Therefore, by mixing plate bending with shear strains and membrane drawing effects
for large strain elastic—plastic deformation problem, a refined discrete thick/thin four-nodal quadrilateral
Mindlin plate element (shown in Fig. 1), named as RDKQM given by Chen and Cheung (2000) based on
Mindlin/ Reissner plate theory is introduced into the present finite element formulation with rate-dependent

X3

o

Fig. 1. Geometric description of the RDKQM element.
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quasi-flow plastic constitutive model. It should be mentioned that in all of the following simulation
examples, the Crank—Niokolson method described in Section 2.2 is used for time integration of constitutive
equation (46) by taking 6 = 0.5 in Eq. (33).

It should be mentioned that the time integration of the constitutive equations (47) and (48) is carried out
by taking widely used Euler method. The integrative scheme is to keep jarless change of the constitutive
tensor L;j. g rate in Eq. (48). According to Nagtegaal and Jong’s
scheme (1981), the time increment At i 1n Eq. (31) should satisfy the following restricting equation:

! !
(0(0) + 3 A1) + 7, A1) =2
where 2< 1. Once the crosshead speed & and the time increment A are determined, the crosshead dis-
placement increment Aw becomes known. At the present simulation, the 4 value is taken as 0.5.

[(1+ A)as], (60)

4. Numerical results and discussions
4.1. Plane strain tension

To examine the validity of the present QFC theory, a finite element solution for plane strain tension test
with an initial surface imperfection f; shown in Hu et al. (1998a,b) is presented. Based on finite strain
version, three kinds of plasticity constitutive theories with strain rate-dependence, the J2-flow theory (J2F),
the J2-deformation theory with rate form (J2D), and the QFC theory, are introduced into the numerical
simulation tests in order to make a detailed comparison within these theories on bifurcation and post-
bifurcation behaviors including strain localization and shear band formation, influence of meshing size, rate
sensitivity exponent m and non-dim tensile speed v, where vg = it/ (Lég) Two undeformed configurations
of a quarter specimen are specified by initial length L and width W (= L/3) as shown in the first one of Fig.
2(a) and (b), which are divided into 10x25 and 8x20 meshes, respectively. Material and geometrical
parameters of the test are taken as follows:

n=00625, #=10"1/s, A=590 MPa, E=200GPa, u=033, yield strain & = 0.002,

yield stress 6y = 400 MPa, initial imperfection parameter f, = 0.005, vg = 1000.

First, taking the rate sensitivity exponent m = 0.001 in Eq. (28), Fig. 2(a) and (b) show the final de-
formed configurations (elongation ratio U/L = 0.14) for localization necking and shear bands which are
obtained by the three theories with non-dim tensile speed vg = 1000. Fig. 3 shows the relation curves be-
tween non-dim tensile force F//(Way) and elongation ratio U/L with 10x25 meshing for the three con-
stitutive theories. It can be obviously observed that except J2F theory, clear shear bands are found from the
simulated results of QFC and J2D theories whichever meshing divisions, and in the post-bifurcation
simulation, the non-dim tensile forces obtained by the three kinds of theories show their explicit difference.
A remarkable fact is that the localization calculated with J2F theory is much later than that with J2D
theory and the localizations calculated with QFC theory are located between them. Moreover, a severe
shear band is shown in the last one of Fig. 2(a) and (b), and no shear band forms in the second one of Fig.
2(a) and (b) for J2F theory. But, the shear band for QFC theory is moderate. If one notes the evolving
processes of the quasi-elastic modulus Eq in Eq. (2) during plastic deformation and compares with other
two theories else, it can be understood that the above simulated results of the QFC theory are reasonable.
For a small m value, numerical results in Figs. 2 and 3 are presented that illustrate the localization behavior
of slightly rate-dependent solids under static loading condition. If the m value is very small, one can
consider that the effect of strain rate dependence is very little, so as to be neglected. So, three kinds of
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Fig. 2. Localization necking and shear bands obtained by three theories with m = 0.001 and v = 1000. (a) Final configurations
simulated with 10x25 meshes, (b) final configurations simulated with 8 x20 meshes.
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Fig. 3. Relationship between non-dim tensile force and elongation ratio for three constitutive theories.

theories will come back to their original forms with no rate-dependence. At this rate, the QFC theory with
rate-independence and with slightly rate-dependent solids should get more reasonable results compared
with those of J2F and J2D theories, from the viewpoint that normality rule of plastic flow gradually evolves
into non-normality rule with vertex effect due to the basic ideal that the vertex effect of “yield surface”
gradually appear throughout the whole plastic deformation processes from initial yielding to bifurcation
and post-bifurcation up to final localization fracture discussed by Hu et al. (1998a,b).
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The following discusses involve material rate dependence and mesh sensitivity of three constitutive
theories in localization problems. In effect, material rate dependence implicitly introduces a length scale into
the governing equation, although the constitutive description does not contain a parameter with the
dimensions of length studied by Needleman (1988). The present simulation results obtained by different
constitutive theories further certify the basic characteristic, and discover some new characteristics. Fig.
4(a)—(c) shows the effects of the two different meshing sizes and three different rate sensitivity exponents on
the non-dim tensile force F/(Way). It can be obviously seen that the meshing sizes obviously affect the
post-bifurcation behaviors of the non-dim tensile force no matter which constitutive theory, when the rate
sensitivity exponent m is taken to be a relative small value. As the m value increases, the pathological mesh
size effects associated with numerical solutions of post-bifurcation problem gradually disappear, especially
for an obviously large m value (m = 0.02), the simulated results from three theories are almost superposed.
Fig. 5(a) and (b) show the final configurations with 10x 25 mesh size simulated from the three m values and
by J2D and QFC theories, respectively. The configurations further illustrate that whether the J2D theory or
QFC theory is used, the shear band gradually broadens so much as clears away, as the rate sensitivity
exponent m increases. When the m value increase to a extent, such as 0.02, the appearances of the final
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Fig. 4. Relationship between non-dim tensile force and elongation ratio with two kinds of meshing sizes and different m values
simulated by three theories.
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configurations from J2D and QFC theories are almost the same with that from J2F theory shown in Fig.
2(a). This phenomenon makes us know that the plastic constitutive theories with rate dependence can
efficiently restrain the pathological mesh size effects, weaken the strain localization behavior involving shear
band deformation and lengthen plastic deformation ability of materials during the post-bifurcation process.
It can also be concluded that the difference of all of the numerical results in the present paper induced by
different plastic constitutive theories, such as J2F, J2D, QFC and others else introduced in the past paper of
Hu et al. (1998a,b), will be reduced. In general, the strain rate sensitivity of metal materials is not so much
large, within about 0.0005-0.01, so the simulated results from different constitutive theories with rate
dependence should be different, and the QFC theory should obtain more reasonable results compared with
the other two theories, from the above discusses.

Finally, using the QFC theory, effects of the rate sensitivity exponent m and the non-dim tensile speed vg
on non-dim tensile force and necking ratio along the cross-section of the specimen’s center shown in the first
one of Fig. 2(a) and (b) are simulated. Figs. 6 and 7 show the effects of the m and vg values on non-dim
tensile force and necking ratio with 10x 25 meshing, respectively. It can be found from Fig. 6 that when a
constant vg value is taken in advance, the larger the m value is taken, the larger the non-dim tensile force is
needed, and the smaller the necking ratio on the condition of the same elongation ratio. On the other hand,

10%25 meshes, v,=1000 QFC theory
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12
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Fig. 6. Effects of different m values on non-dim tensile force and necking ratio obtained by QFC theory and with 10x25 meshes.
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Fig. 7. Effects of non-dim tensile speeds on non-dim tensile force and necking ratio obtained by QFC theory and with 10x 25 meshes.

it can be also noted from Fig. 7 that if taking a constant m value (0.001), although the non-dim tensile force
shows obvious difference during post-bifurcation stage due to different vr values, the vr values have almost
no effects on the necking ratio.

4.2. Sheet metal forming

A lot of experiments have shown that steels display positive strain rate dependence, which can be found
from Simunovic and Shaw (2000) and Engl and Drewes (2000), and in general, higher punch speed results
in higher strain rate. As a result, steels have higher strengths and consequently higher energy absorption.
Preliminary studies confirmed that utilization of the phenomenon could assist in lightweighting.

Fig. 8 shows typical changes of true stress—true strain curves with different tensional strain rates for a
TRIP 450/800 steel sheet under uniaxial stretching, from which it can be found that the stress values on the
true stress—true strain curves orderly increase as the tensional strain rate does.

In order to recur the phenomenon by numerical simulation scheme and to verify the validity of the
proposed rate-dependent quasi-flow corner plastic theory with punch speed sensitivity, another uniaxial
stretching testing of the HPC35 high tensional steel sheet is simulated by Penazzi et al. (1992), which is with
differential crosshead tensile speeds and convenient for comparing between theoretical model and experi-
mental method. The initial configuration, size and finite element meshing of the specimen are shown in Fig.
9, in which sheet thickness is 0.66 mm, meshed element number 2312 and nodal number 2466. Material
parameters are given in Penazzi’s test (1992) and calculated in terms of the initial material parameters,
which are shown as follows:

n=025 m=0007, &=1071/s, 4=623 MPa, & =0.0

P~ p J

E =65875 MPa, u=0.3, yield strain &y = 0.002, yield stress 6y = 131.75 MPa

The material is assumed to be isotropic and obey Mises yield criterion. Before stretching, the AB end of the
specimen is fixed, and then the another end CD is drawn with three differential crosshead speeds, i = 5, 500
and 6000 mm/min. The same problem is simulated by introducing the three kinds of speed values into the
above finite element formulation. During calculation of the element matrices of the RDKQM, six-point
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Fig. 9. Initial configuration, size and finite element meshing of the uniaxial stretching specimen. Sheet thickness: 0.66 mm; element
number: 2312; nodal number: 2466.

Lobatto integration, four-point Gauss integration and one-point integration are used in the thickness
direction, bending stiffness and shearing stiffness, respectively.

Fig. 10(a) and (b) shows the tensile force curves of the CD end versus the crosshead displacement and the
true stress—plastic strain curves of the EF section, respectively. It can be clear found from Fig. 10(a) that
different drawing rates result in obvious changes of not only the height and maximum value of the tensile
force curves, but also the instability and necking points of the drawn specimens. As the crosshead speed
increases, the critical tensile lengths when the specimens begin necking gradually decrease (seen in Table 1).

The phenomenon obtained by numerical simulation is in consistent with most experimental ones, it is to
say, the necking and deformation localization of the specimens are brought forward as the crosshead
drawing speed increases. Comparing with given experimental results, the present theoretical model and
FEM are in very agreement with the measured values, the maximal error being 4.09%, which shows the
validity of the present theoretical model.

Fig. 10(b) shows the true stress—plastic strain curves on the section EF (x = 0 section) of the specimen,
from which very good agreement between experimental results and numerical simulation ones can be found
in the scope of measured data points, the maximal error being 4.2%.
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Table 1
Critical tensile lengths with different crosshead speeds when specimens begin necking
Crosshead speed (mm/min) Critical tensile length when specimen begins necking (mm)
5 23.7446
500 21.2803
6000 20.2867

Another numerical test is the square cup drawing with a circular blank. The commonly used 08Al steel
sheet with a sheet thickness of 0.8 mm is taken as testing and simulated specimens. From uniaxial tests,
some material constants were determined and shown as follows:

n=0248, m=001, & =00, &=10"1/s, 4=540 MPa,

E =207 GPa, u=0.3, yield strain &y = 0.002, yield stress 6y = 110.3 MPa.

A quarter of circular blank with radius 45 mm is used to simulate the square cup drawing process due to
material and structural symmetry. Fig. 11(a) shows the geometry and dimensions of the punch and die, and
finite element meshing of a quarter of circular sheet, in which element number and nodal number are 503
and 547 (seen in Fig. 11(b)), respectively. Three punch speeds, i.e., # = 50, 100 and 150 mm/s, are set up in
the present experiment and numerical simulation. During the stamping calculation, common contact
algorithm proposed by Li et al. (2002) and Coulomb friction law are used, in which the friction coefficients
of the contact surfaces of the stamped sheets corresponding to the punch, die and binder are taken to be 0.2,
0.1 and 0.1, respectively. Fig. 12(a) and (b) shows the experimental and the numerical simulated results (the
quarter of circular blank) of the final deformation configuration with maximal drawing length 40 mm when
punch speed is 100 mm/s. Two typical sections on the blank are taken as tested ones, one being the section
AB along the diagonal direction and another being the section AC along the cross-section direction on the
initial blank (seen in Fig. 11(b)). Fig. 13(a) and (b) shows the thickness distributions on the sections AB and
AC with different punch velocities and corresponding to the final configuration. The actual thickness values
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Fig. 11. Geometry and dimensions of the punch and die, and element meshing of one quarter of circular sheet: (a) square cup drawing
test of circular sheet, (b) finite element meshing of 1/4 circular sheet.

i sl |
R 5 )
5.8410-01

l 6538001
T. 23600
78350
86310
4 22601
1 00es00
I 1072600
1120000
LT BB
1.1Q1000

Bl el Ak B
5.830Te-001

(a) (b)

Fig. 12. (a) Final deformation configuration obtained by experiment with punch speed & = 100 mm/s. (b) Final configuration and
element meshing.

on the sections AB and AC in experiments are measured by a TM1-CD type thickness-detected instrument
made by Stress Tel Company in America. It can be obviously found that there is in good agreement be-
tween experiments and simulated results. An evident fact is that the loading conditions with faster punch
machine velocity result in faster thinning within the region where blank is markedly stretched.

In order to show the ability of the present strain rate dependent plasticity model to deal with localized
thinning and strain localization during deep-drawing processes, for a given punch speed # = 100 mm/s, the
effects of strain rate sensitivity on the thickness distribution of the sections AB and AC are further studied
by taking the stain rate sensitivity exponent m in Eq. (28) to be 0.001, 0.01 and 0.1, respectively. Fig. 14(a)
and (b) shows thickness thinning characteristics on the sections AB and AC. It can be found from Fig. §
that the strain rate dependent plasticity model with larger m value restrains the localizing thinning and
makes the thickness distribution trend to more smooth and more uniform; On the other hand, when the m
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Fig. 14. Effects of the strain rate sensitivity exponent m on thickness distributions: (a) along AB section, (b) along AC section.

value is taken to be 0.001, a very small value, the effect of the strain rate sensitivity becomes not half, and a
rapid localizing thinning appears on the corner of specimen.

The final numerical example is an industrial forming test, in which an oil pan made in the First
Automobile Manufacture in China is stamped by a hydraulic pressure machine with different punch speeds.
The die structure of the oil pan is modeled by the famous CAD software CATIA, including punch,
blankholder and die-face model, which is shown in Fig. 15. In the forming test, maximal drawing depth,
closing punch and die, is 208 mm. The punch speed is previously adjusted as & = 100 mm/s. The formed
sheet metal is a 08ZF material and its initial thickness 4y = 1.5 mm. the friction coefficients of the contact
surfaces of the stamped sheets corresponding to the punch, die and binder are taken to be 0.15, 0.15 and
0.1, respectively. Material parameters are given as follows:

n=024, m=001, & =00, &=10"1/s, 4=540 MPa,
E =200 GPa, u=0.25, yield strain &y = 0.002, yield stress 6y = 112 MPa.
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(b) (c)

Fig. 15. The die structures of the oil pan: (a) punch surface, (b) die surface, (c) blankholder.

The shape of the blank sheet and finite element meshes discredited into 6976 RDKQM elements are shown
in Fig. 16. Two important relation lines involving with the influence of punch speed are shown in Figs. 17
and 18. The former gives the comparison trending lines of maximal drawing depth with different punch
speeds, which are obtained by the present FEM and by experimental results measured using the TM1-CD
type thickness-detected instrument, when the thickness value /5, on the dropping oil hole (seen in Fig. 19);
and the latter is another relation lines between the thickness value 44, and punch speed, when the drawing
depth reaches 188 mm. It can be remarkably found from the two figures that the maximal drawing depth
value decreases as punch speed increases if a fixed thickness value on dropping oil hole is taken to be critical
criterion; on the other hand, the thinning of the thickness /4, on the dropping oil hole increases as punch
speed does if the drawing depth reaches a fixed value. The evolutive trends are qualitatively coincident with
that measured from experiments.

In order to further investigate the validity of strain rate sensitivity model, the rate sensitivity exponent m
is again taken to be 0.001, 0.01 and 0.1, respectively; and three special measuring points Aj, A,, and A;
shown in Fig. 19 are used to check the simulated accuracy of the present QFC theory. Table 2 gives a detail
comparison. It is obviously seen that the present model gets very agreement results compared with
experimentally measured thickness values on the special points, especially when the m value is taken to be
0.01.

117

132

24t

Fig. 16. Shape of blank sheet and its FEM meshing.
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Fig. 19. Thickness distribution of the final configuration simulated by QFC theory with the punch speed & = 100 mm/s.
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Table 2
Comparison within experimentally measured results and the present model when the punch moves to maximal drawing depth 208 mm
ha, (mm) ha, (mm) ha, (mm)
Present model i =100 mm/s m = 0.001 0.88 1.03 1.12
m=0.01 0.99 1.08 1.19
m=0.1 1.05 1.16 1.28
Experimentally measured values # = 100 mm/s 1.01 1.11 1.20

5. Conclusions

Many metal materials represent their strain-rate dependency. Especially when materials go through large
plastic deformation, the strain-rate dependency appears more obvious. Different speed boundary condi-
tions, such as crosshead speed and punch speed, result in the change of strain-rate of materials, which can
be introduced into the plasticity constitutive model by so-called Hollomon formula. In the present paper,
the strain-rate dependent quasi-flow corner plastic constitutive theory is proposed for elastic visco-plasticity
materials with large-deformation, and punch speed sensitivity is introduced as the special speed boundary
condition in terms of the above consideration. Two classical rate-dependent isotropic plasticity theories, the
J2F and J2D theories, are compared with the present theory for plane strain tensile test. It has been found
from a lot of numerical examples that the rate-dependent plastic constitutive theories can efficiently restrain
the pathological mesh size effects, weaken the strain localization behavior involving shear band deforma-
tion and lengthen plastic deformation ability of the elastic/visco-plastic materials. It can also be concluded
that the difference of all of the numerical results in the present paper induced by different plastic constitutive
theories, such as J2F, J2D, QFC and others else introduced in the past paper (Hu et al., 1998a,b), will be
reduced. In general, the strain rate sensitivity of metal materials is not so much large, so the simulated
results from different constitutive theories with rate dependence should be different, and the QFC theory
should obtain more reasonable results compared with the other two theories. The uniaxial tensile test, the
deep-drawing test of circular blank with square punch and the actual industrial stamping test of an oil pan
deep-drawing further show that numerical simulation results obtained by QFC theory are in good agree-
ment with experimental ones, which exhibit the validity of the present theory and calculation model.
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